Effect of liquid and air swirl strength and relative rotational direction on the instability of an annular liquid sheet

نویسنده

  • A. A. Ibrahim
چکیده

Instability of a swirling annular liquid sheet in swirling inner and outer air streams has been investigated by a temporal linear stability analysis. The effects of the swirling and axial motion of the liquid and the air streams, as well as the effects of relative inner and outer air swirl orientation with respect to the liquid swirl direction on the instability have been investigated. Results show that for a non-swirling liquid sheet axial inner air stream is more effective than axial outer air stream in enhancing the sheet instability. This is opposite of a swirling liquid sheet where axial outer air is more effective in promoting sheet instability compared to axially moving inner air stream. The liquid swirl has a destabilizing effect at the outer interface but has a stabilizing effect at the inner interface. At high liquid swirl Weber number, the outer air (with axial and swirl velocity components) is more effective in enhancing sheet instability compared to the inner air (with axial and swirl velocity components). To understand the effect of air swirl orientation with respect to liquid swirl direction, four possible combinations with both swirling air streams with respect to the liquid swirl direction have been considered. Results show that at high liquid swirl Weber number a combination of counter-rotating-inner air stream and co-rotating-outer air stream has the largest most unstable wave number. However, at low liquid swirl, co-inner/counter-outer combination has the largest most unstable wave number. The combination of inner and the outer air stream co-rotating with the liquid has the highest growth rate. In many combustion applications, the liquid sheet is injected in high pressure environment where the effect of high ambient pressure results in increased aerodynamic interaction due to high air density. Hence the effect of high ambient pressure is studied in terms of the dimensionless parameter of air-to-liquid density ratio. Results show significantly higher disturbance growth rates at high air pressure. However, the qualitative sheet stability behavior is similar to that at atmospheric pressure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Non-newtonian Fluid and Flow Conditions on the Instability of an Annular Liquid Sheet

A temporal stability analysis was carried out to model the atomization of a swirling viscous non-Newtonian annular liquid sheet emanating from an air-blast atomizer subject to inner and outer inviscid swirling air streams. The dimensionless dispersion equation that governs the instability of a viscous non-Newtonian annular liquid sheet under swirling air streams was obtained. Numerical solution...

متن کامل

Instability study of an annular liquid sheet of polymer produced by atomization

A temporal stability analysis was carried out to model the atomization of a swirling viscous annular liquid sheet emanating from an air-blast atomizer subject to inner and outer inviscid swirling air streams. The dimensionless dispersion equation that governs the instability of a viscous annular liquid sheet under swirling air streams was obtained. Numerical solutions to the dispersion equation...

متن کامل

Effect of temperature on atomization in gas centered coaxial injection systems

This paper summarizes the current status of research work carried out at IISc on the characterization of liquid sprays developing from gas centered coaxial injection systems. The coaxial system injects an annular swirling liquid sheet and a central gaseous jet. The interaction process between the swirling liquid sheet and the non-swirling gaseous jet results in a fine spray. The present study a...

متن کامل

CO2 Removal from Air in a Countercurrent Rotating Packed Bed, Experimental Determination of Height of Transfer Unit

Carbon dioxide capture is a key issue in climate change mitigation. For decades the removal of carbon dioxide has been an essential step in many industrial processing operations such as the synthesis of ammonia, natural gas purification, and oil refining. In this study, a rotating packed bed has been designed for absorption of carbon dioxide from an air stream. The rotating packed bed is a comp...

متن کامل

Influence of Geometry on the Performance of Simplex Nozzles under Constant Pressure Drop

In this paper, the effect of atomizer geometry on the flow in simplex atomizers and atomizer performance is numerically investigated. A computational model based on the Arbitrary-Lagrangian-Eulerian method has been used. The effect of changes in four non-dimensional geometric parameters on the atomizer performance is studied. These geometric parameters are the atomizer constant (ratio of inlet ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006